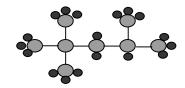


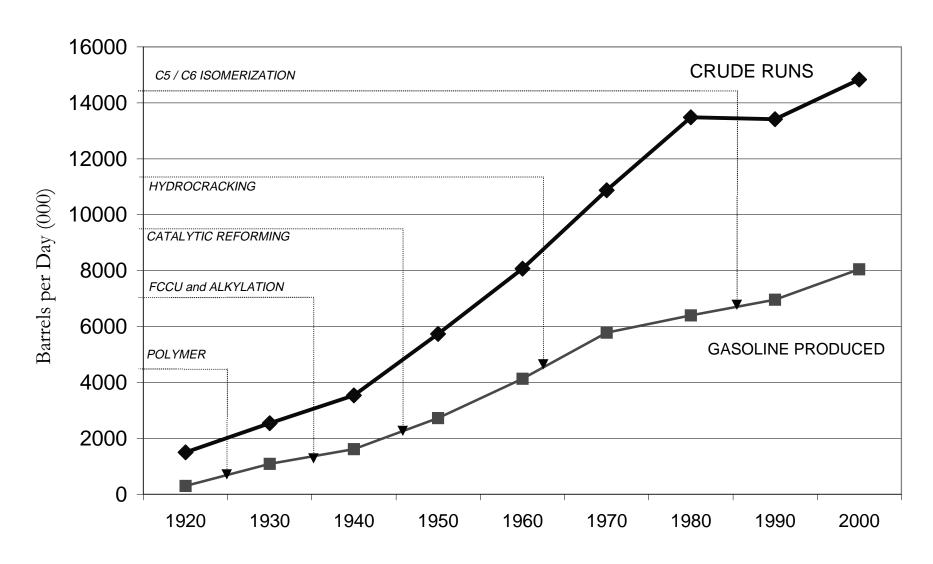
Presented to

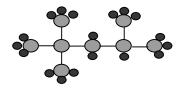

The Clean Air Act Advisory Committee

Panel on Oxygenate Use in Gasoline

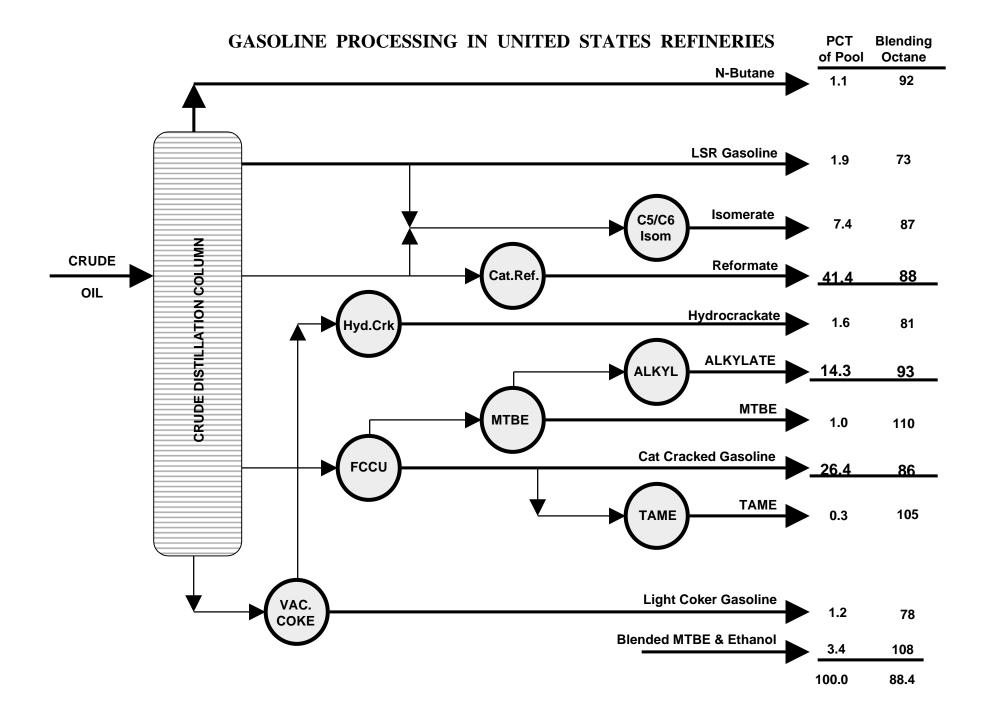
By

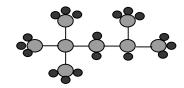
K. Dexter Miller, Jr DeWitt & Company Incorporated


May 24, 1999



Historical Development of Gasoline Production:

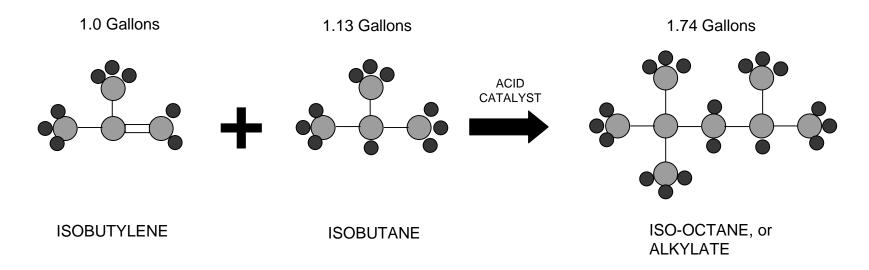

Straight-run Gasoline to about	1925
Polymer Gasoline	1930
Cat Cracking & Alkylation	1935
Catalytic Reforming	1940's
Hydrocracking	1960's
Isomerization	1980's


Refinery Operations in the USA

The Structure of Gasoline Production Today
Governed by ASTM Spec. D 4814 & CAA
Eleven Significant Blendstocks
Each Has Unique Properties of Octane, etc.
Reformate, Cat Cracked Gasoline Account for 67%
Alkylate has 14%
Refiners Can Blend in Many Ways, but must
Always meet Octane, RVP, and Boiling Points
Oxygen, Aromatics, Olefins and Sulfur

Alkylate

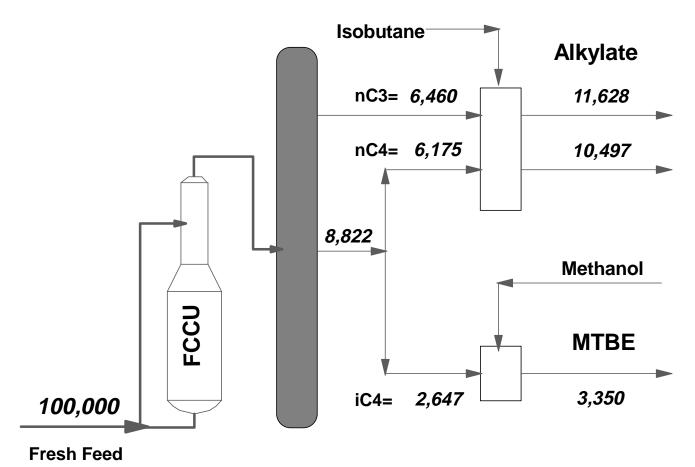
is produced by Reacting C3 and C4 Olefins with Isobutane.


Olefins

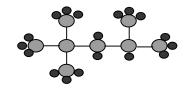
are produced by the Catalytic Crackers Have limited range for expansion

Most refiners

have alkylation capacity matching the Cat Crackers


The Alkylation Reaction

Note: When mixed butylenes are fed to the reaction, a similar process takes place. The overall octane for mixed feed is about 94.5 vs 100 for pure isobutylene feed.


As produced in a refinery, a typical alkylate contains about 26% isooctane, and about 25% of other alkylated octanes.

Typical Fluid Catalytic Cracker Yields of C3 and C4 Olefin Streams

Note: Typical yields
Based on 23 API Feed

80% Conversion

CALIFORNIA Consumes

915,000 B/D of gasoline

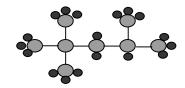
435,000 B/D of Reformate 168,000 B/D of Cat Cracked Gasoline 165,000 B/D of Alkylate 99,000 B/D of MTBE

REFINERS IN CALIFORNIA

Have limited possibilities for Alkylate Increases Will be hard pressed to replace the lost volume

California Gasoline Production in B/D Blending Characteristics

				Octane	VPBI			I	Aromatics		
Unit	Capacity Ble	ndn am e	Output	(R+M)/2	psi^1.25	Olefins	\mathbf{Bz}	Tol	Xyl	C9's	Total
Crude	1,882,850 LSR		0	73.1	25.40	0	0	0	0	0	0
C 56 Isom	104,700 Isomer	ate	100,512	87.0	34.27	704	141	478	605	183	1,407
Thermal	519,000 Lt Col	cer	39,859	78.2	24.68	14,030	179	610	771	233	1,794
FCCU	636,900 C5+ g	as	168,142	86.4	11.59	48,929	4,910	16,693	21,112	6,383	49,097
Reformer	520,400 Reform	nate	434,638	84.0	3.95	869	7,146	90,948	109,138	31,182	238,415
Alkylation	171,600 Alkyla	te	164,736	92.1	13.24	824	66	224	283	86	659
Hydrocracker	464,970 Lt hyd	rocrk	44,637	80.9	23.50	89	121	410	518	157	1,205
MTBE	99,000 MTBE		99,000	110.0	13.45	0	0	0	0	0	0
TAME	5,000 TAME	1	4,800	105.0	3.14	0	0	0	0	0	0
			1,056,324	88.1	12.00	65,445	12,562	109,364	132,428	38,223	292,577
				RVP>	7.30	6.2%	1.2%	10.4%	12.5%	3.6%	27.7%
	Export to	to AZ	80,000	CARB Flat	7.00	4.0%	1.0%				25.0%
	·	NV	30,000								
		CO	25,000								

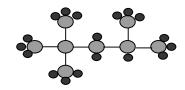

CO 25,000 HI 6,000 141,000

Used in California 915,324

ALKYLATION SITUATION IN CALIFORNIA REFINERIES

			Max. fro	Fraction Used		
Company	Location	Alky	C4 Alky	C3 Alky	C4=	C3=
Chevron U.S.A.	Richmond	32,000	11,480	9,030	ALL	227%
Atlantic Richfield Co.	Carson-Watson	14,000	15,088	11,868	93%	None
Equilon Martinez Refy Co.	Martinez	10,600	11,414	8,978	93%	None
Equilon Enterprises LLC	Wilmington	9,000	5,297	4,167	ALL	89%
Tosco	Wilmington	16,500	7,708	6,063	ALL	145%
Tosco	San Francisco	15,000	10,906	8,579	ALL	48%
Mobil Oil Corp.	Torrance	22,000	14,842	11,675	ALL	61%
Exxon Co.	Benicia	14,000	11,316	8,901	ALL	30%
Ultramar Diamond Shamrock	Wilmington	10,500	6,232	4,902	ALL	87%
Chevron U.S.A.	El Segundo	28,000	10,168	7,998	ALL	223%
		171 600	104 452	82 160		

Note: Not much room here for expanded Alkylate production, except perhaps by Chevron



Refiners Elsewhere in the USA

Have about the same yield structure as in California Are fully built up with respect to Alkylate Capacity Cannot really produce any extra for California Will also have volume problems if all USA drops MTBE

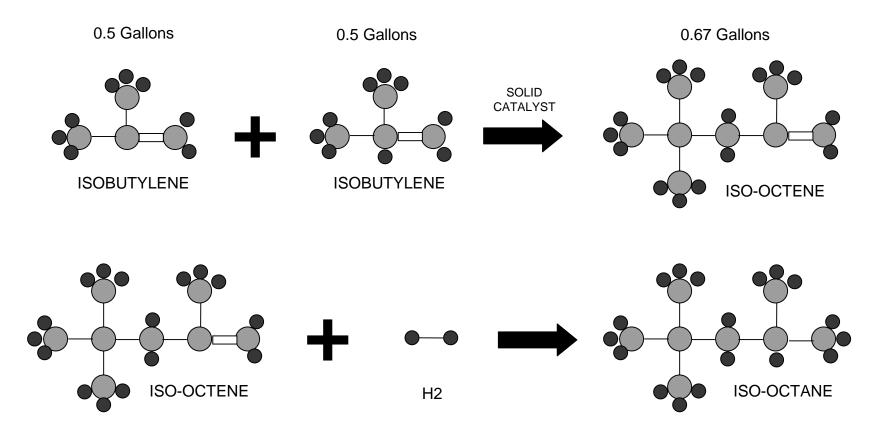
United States Gasoline Production in 1998 in Barrels per Day Blending Characteristics

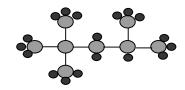
				Octane	VPBI				Aromatics		
Unit	Capacity	Blendname	Output	(R+M)/2	psi^1.25	Olefins	\mathbf{Bz}	Tol	Xyl	C9's	Total
Crude	15,975,365	LSR	154,961	73.1	25.40	3,409	434	1,475	1,866	564	4,339
C 56 Isom	615,025	Isomerate	596,574	87.0	34.27	4,176	835	2,840	3,591	1,086	8,352
Thermal	2,506,724	Lt Coker	97,261	78.2	24.68	34,236	438	1,488	1,882	569	4,377
FCCU	5,897,430	C5+ gas	2,108,007	86.4	11.59	613,430	61,554	209,283	264,681	80,020	615,538
Reformer	4,130,770	Reformate	3,320,674	87.0	3.95	6,641	58,554	745,237	894,285	255,510	1,953,587
Alkylation	1,186,280	Alkylate	1,150,692	92.6	13.24	5,753	460	1,565	1,979	598	4,603
Hydrocracker	1,480,570	Lt Hydrocrk	129,254	80.9	23.50	259	349	1,187	1,501	454	3,490
n-Butane		n-Butane	89,000	92.0	139.64	0	0	0	0	0	0
Ethanol		Ethanol	90,900	105.0	29.52	0	0	0	0	0	0
MTBE		MTBE	280,786	110.0	13.45	0	0	0	0	0	0
TAME		TAME	22,126	105.0	3.14	0	0	0	0	0	0
•			8,040,235	88.3	12.63	667,904	122,624	963,075	1,169,785		2,594,285
5/19/99 12:37				RVP>	7.61	8.3%	1.5%	12.0%	14.5%	4.2%	32.3%

Potential Sources of Additional Alkylates or Similar Blendstocks

Convert MTBE plants to make Alkylate

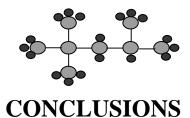
Convert MTBE plants to make Isooctane


Use Raffinates from Olefins Plants

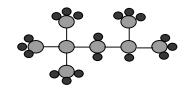

VERY EXPENSIVE

EXPENSIVE

HAVE OTHER USES


Iso-Octane via Polymerization of Iso-Butylene

Potential Cumulative New Products from Shutdown MTBE Plants


<u>Year</u>	<u>Alkylate</u>	IsoOctane
2003	73,500 B/D	46,400 B/D
2005	176,000	111,100
2007	271,200	171,200
Capital Cost	\$1.1 Billion	\$385 Million

ALKYLATES are Excellent and Widely-Used Blendstocks for Gasoline They have: High Octane (92-94)

Very small contents of Olefins, Aromatics, & Sulfur

OPPORTUNITIES for Expanded Use are Limited

CONCLUSIONS

ALKYLATES ARE INFERIOR TO MTBE in Clean-Air Gasoline

10-15 Octanes Lower

Higher T10 and T90 Points

No Oxygen

ETHANOL is ALSO LIMITED

Slightly Lower Octane

Vapor Pressure

Dilution Effect Smaller

A TOTAL LOSS OF MTBE OUTSIDE OF CALIFORNIA

Would require DRASTIC reductions in RFG Quality